A thoroughly sporadic column from astronomer Mike Brown on space and science, planets and dwarf planets, the sun, the moon, the stars, and the joys and frustrations of search, discovery, and life. With a family in tow. Or towing. Or perhaps in mutual orbit.



To the Moon, Five Years Later

I first published this five years ago today. It's all still true. -- MEB

My father was a rocket scientist. Well, OK, not precisely. More specifically he was a rocket engineer. Or, more precisely still, he was an engineer who worked on the computers that went into space and navigated the rockets. He worked on the Saturn V that lifted Apollo astronauts toward the moon, he worked on the Lunar Module, which touched down on the moon, he worked on the Lunar Rover, which drove astronauts around on the moon. All of this before he was 30 years old.

I never remember him talking about it at all, talking about what it was like to send men to the moon, to be involved in such a tremendous adventure, but, ten years ago, in the little farming town on the edge of the Mississippi River where he grew up, I had a conversation with one of his friends from those days, and he told me that they all felt like they had lived in a magical time. After the Apollo missions ended, they all later worked on the Space Station and more mundane things like the ticket-taker on the BART trains that I used to take when I was a graduate student living on the San Francisco Bay. But nothing in their lives was ever quite like a being a bunch of thirty-year-old kids living in northern Alabama having the blind optimism to think that if there was a rocket being built they knew enough to put the computers together to make those rockets bring people to the moon. And back. And then actually doing it.

Snow balls in space

It didn’t snow much in northern Alabama where I grew up, so, when I went to college further north, I was at a serious disadvantage when the first blizzard came through and everyone streamed out of the dorms to engage in an all night snowball fight. After my first rounds of fusillades ended up splintering to little wispy bits in midair I quickly got the hang of compaction, looking for wetter snow, and doing what I could to increase the density of the snowballs. I broke a window, confessed, and escaped punishment with the lame but true excuse that I had no idea snowballs could break windows. Friends with more snowball experience and more delinquent childhoods told me about burying a stone or two inside of the snowball to increase its destructive power.  

These look too fluffy to me. I don't think they'd survive flight.


I don’t get much snow in southern California, but I do spend a lot of my time thinking about those early snowball experiences and about the snowball fights that have made the objects of the outer solar system.

Summer project: Build a radio telescope at home

When we moved into our house more than 7 years ago now the old owners left their Dish Network satellite TV dish attached to the roof. A few months later we got a sternly worded letter from the Disk Network demanding that we send them the dish back. With my detailed knowledge of the intricacies of the American legal system my obvious response was: come and get it. Which would have been fine with me. But, actually, that was not even my response, my response was to throw the letter in the trash while thinking in my head "come and get it."

Seven year later the dish was still on the side of the house. Luckily it is on the side that I never really see, so I didn't worry about it, but every now and then I thought to myself: "I should at least go up and take down that eyesore." But I never did. Until now.

I occurred to me a while ago that a parabolic dish like that would make a fine radio telescope (OK, it will end up a microwave telescope, but we'll get into the details later).

I'm not a radio astronomer or an electrical engineer or a Ham radio guy or any of that stuff, so I really had no idea what I was talking about, but it seemed a fun project for Lilah and I to play around with for the summer and for both of us to learn a little bit about microwaves. The caveat, though, is that my electronic explanations might not be exactly right. And I might break things.

We started last week. Step 1: remove the dish from the roof and see what was there. I had to snip the coax cables that went into the house and then undo five big screws and then everything just came unceremoniously down. The main issue was figuring out how to hold the wrench, dish, and ladder at the same time without falling. Luckily I survived this crucial part. Lilah stayed far enough away to avoid getting a dish on her head but to be able to both take pictures of me and make fun of me each time I dropped something and had to go pick it up.


The dwarf planet that gets no respect

Quick: name the three largest known objects in the Kuiper belt. If you’ve been paying close attention you will instantly get Eris and Pluto, and, if pressed, you will admit that no one knows which one is bigger. And the third? An unscientific poll of people who should know the answer (my daughter, my wife, my nephew) reveals that not a single one does.

The answer, of course, is Makemake (you remember how to pronounce this, right? Mah-kay-mah-kay, Polynesian style).  Makemake was discovered just months after the discoveries of Eris and of Haumea, and all were announced within days of each other. Eris and Haumea had important stories immediately attached to them (Eris was as big as Pluto! Haumea had suspicious discovery circumstances!), so poor Makemake stayed in the shadow of its more famous contemporaries. It was so overlooked that, in the hastily called press conference in which we announced the discoveries, I couldn’t even remember the official designation of Makemake when asked (it was 2005 FY9, of course; how could I have forgotten that?).





Comets!

Sometimes I like to write about things in the sky that I've been studying. Sometimes I like to write about scientific discoveries in the outer solar system. Sometimes I even write about wild speculations I have about the solar system. But, every once in a while, I get to just sit back and watch the sky go by.

I love comets. When I first started graduate school to get my Ph.D. in astronomy, I wanted to study the most distant galaxies in the world. But my Ph.D. advisor really wanted me to start by doing a project studying a comet (actually, he wanted all  of his graduate students to start with comets, because no one stuck with them; they jumped to galaxies as fast as they could). I fell in love with comets. Mostly, I think, I fell in love with the fact that you could use huge telescope to study things in the sky that you could actually see with your eyes or with binocular or with a camera. Things that were real. 

So I was pretty excited  about the prospect of Comet Panstarrs close to the tiny tiny crescent moon tonight. We have a great western horizon from my house and I was pretty sure we would have good views. Scientifically, I have nothing at stake. I'm not involved in any attempts to look at the comet with telescopes big or small, on the ground or in space. I just wanted to see it.

So I waited.

The tiny crescent moon was going to be easier to see, so up and down, back and forth, with binoculars I searched. THERE! It was, 25 minutes after sunset, higher than I thought. This was good news. It would be a good ~30 minutes before the comet set. Long enough that even my daughter Lilah would be able to see it.

(Lilah uses a placemat every day that has astronomy pictures [including, yes, Planet Pluto. It was a present. Really] on it, including comets. She is really really excited about seeing one in real life).

I had set out the camera and tripod earlier, and started taking long exposures, hoping to capture the comet. I kept seeing something. Maybe. To the left. Where I knew it should. Be. But? Well? I dunno.

Until, finally, jackpot:



See it? Barely? Something like 6 lunar diameters to the left of the moon?

Sea salt (part 3)

[You should probably start with Part 1]

The first thing that you notice when you look at a spectrum of Europa -- from the Earth, from a spacecraft, it doesn’t really matter – is the ice. Ice is everywhere. The spectrum of ice is a very distinctive looking thing, with a quickly recognizable pattern of regions where the sunlight reflects strongly from the surface and regions where there is less reflectance (and remember the regions here means spectral regions, which means, essentially, we stare at one small spot on the surface, put the light through a prism to spread it all out, and see which colors of the rainbow are present and which are absent. In our case our rainbow is in infrared light that your eye can’t see, but the idea is still the same).

Sea Salt (part 2)

[don’t miss part 1] 

One of the biggest problems with trying to figure out what is on the surface of Europa was that the spectrograph on the Galileo spacecraft didn’t have a very fine view of the reflected light coming off the surface. The analogy I used in Part 1 was that Galileo was looking at fingerprints where you could only discern the rough pattern and not the individual ridges. You couldn’t use those fingerprints to know for sure who had smudged your crystal, though you might be able to rule out some people and you might become more suspicious of others.

There are two main reasons that the views from Galileo were not as fine as we would like. First Galileo was old when it arrived at Jupiter. Serious work began on the spacecraft in 1977, and with typical delays and atypical space shuttle accidents, it was finally launched, via a space shuttle, in 1989. Even the trip to Jupiter took longer than initially planned -- the shuttle accident spawned new rules which required the use of a less powerful rocket to launch Galileo from the orbiting shuttle -- so Galileo could not go directly to Jupiter but instead had to get gravity sligshots off of Venus and Earth before finally heading towards Jupiter and arriving in 1995, nearly twenty years after construction began. It was old on the first day it took data at Jupiter. (It was intentionally crashed into Jupiter in 2002 to prevent, among other things, an accidental crash into Europa, which would clearly disturb the whales).  Not surprisingly, the old technology was not as good as current technology in seeing precise spectral fingerprints.

Sea Salt (part 1)

Ever wonder what it would taste like if you could lick the icy surface of Jupiter’s Europa? The answer may be that it would taste a lot like that last mouthful of water that you accidentally drank when you were swimming at the beach on your last vacation. Just don’t take too long of a taste. At nearly 300 degrees (F) below zero your tongue will stick fast.

The composition of the surface of Europa has been hotly debated since the Galileo mission attempted to make detailed measurements more than a decade ago. Galileo’s tool for measuring the composition was spectroscopy – looking at the sunlight that reflects off of the surface of Europa and seeing which molecules leave characteristic fingerprints in that reflected sunlight. It’s a powerful technique, one that led to the initial discovery of water ice on the Galilean satellite, the discovery of frozen methane on distant bodies like Eris and Pluto and Makemake, and is even used on the Earth to map out mineral deposits for potential exploitation.

There is a Season 5

Some years back, when I first started writing this blog, I went strong for a year, and then felt a need for a rest. I was writing a book, doing science, raising an infant, all things that took time. So I declared that that was the end of Season 1. After a hiatus I was back. As I remember it, Season 2 was written mostly on weekend afternoons during the times that Lilah napped. But naps don’t last forever, and Season 2 ended when those naps did. As my book was just coming out I took a sabbatical from academic work  -- thus the start of Season 3 -- and wrote more, travelled around more, gave more talks, and became generally exhausted. I was thrilled when my sabbatical was over and I could return to science. There was a brief foray into Season 4 more than a year ago, but my heart wasn’t in it. And Lilah definitely no longer napped.
But, out of no where, there is a Season 5.
What’s changed?

And the answer is....

Almost a year ago, Eris – the, uh, most massive known dwarf planet -- passed directly in front of an otherwise anonymous star, momentarily causing the star to disappear, as seen from the earth. By carefully measuring the length of time that the star disappeared, astronomers made a very precise measurement of the size of Eris. I care about the size of Eris for many different reasons, but the most trivial yet emotional for me is the fact that, 5 years ago, I measured the size of Eris myself. We used a much more difficult and less accurate technique than watching a star disappear and timing it. We looked at Eris with the Hubble Space Telescope and carefully compared the tiny disk that we saw with a picture of a star (which should show no disk at all) and we claimed that we could tell that Eris had a diameter of about 1.3 pixels on the HST camera. Only 1.3 pixels! It’s hard to imagine that you could tell the difference between something 1.3 pixels across and 1.2 pixels. In fact, it had never been done before. Even we were not convinced at first that our technique was as accurate as it appeared to be. So we spent months on a careful analysis to make sure we had done nothing wrong. In the end our measurement technique passed every test we could dream up for it, and we became convinced that it was correct. We wrote the paper to announce it to the world. The diameter of Eris, we claimed, was 2400 km with an uncertainty of 100 km in either direction (I’ll be writing this as 2400±100 km).