A thoroughly sporadic column from astronomer Mike Brown on space and science, planets and dwarf planets, the sun, the moon, the stars, and the joys and frustrations of search, discovery, and life. With a family in tow. Or towing. Or perhaps in mutual orbit.



Showing posts with label southern hemisphere. Show all posts
Showing posts with label southern hemisphere. Show all posts

Heading South, Looking Up



For most of the past decade the last thing I would do before going to bed was to step out on to my back patio and stare up at the sky for a few minutes, checking for clouds. If the skies were clear I always slept better. In the morning, I would hop out of bed and do the same thing, to see if any unexpected weather front had passed or cirrus had snuck in while I had been sleeping. If all was well with the skies, I knew that my robotic telescope 95 miles southeast of me, likely had a successful night scanning the skies, and I was excited to get up and get to my office to see the results. I knew that any clear night we might (and eventually did!) discover something larger than anything else ever seen past Neptune. It was just a matter of time and of keeping those pesky clouds away.

A ghost of Christmas past

Five years ago I was sitting at work in that quiet week between Christmas and New Year’s Day desperately looking for the 10th planet. I had made a bet five years before that that I would find a new planet by Dec 31, 2004. Time was running out. I was about to lose. I hate losing. So I was searching and researching all of the pictures of the sky I had taken over the past two years hoping that maybe somewhere in those old pictures was something that I had missed. Maybe there was still a planet to be found after all. Maybe I wasn’t going to lose my bet.

Just 3 days after Christmas I came the closest I had ever come. There was something in the old images that had been missed the first time around, and it was bright. I sent email to Chad Trujillo and David Rabinowitz, the two other astronomers I worked with, saying that this new object was so bright that it might well be twice the size of Pluto. Or bigger! Being right after Christmas, we of course called the object Santa.
Santa, which now goes by the official name of Haumea, we now know to be only about ½ the size of Pluto, and we call it – and Pluto – a dwarf planet rather than a planet. But back in those last days of 2004 when the discovery was first made, we had no idea where all of it was heading.
Our understanding of the Kuiper belt has changed dramatically in these past five years. The best example of this change comes, I think, from the discovery of a large Kuiper belt object that was announced just a few days ago. For me it was a particularly surprising discovery. For the first time I was not at the receiving end of a telescope making the discovery, I was at the receiving end of an email asking me about this new object called 2009 YE7.

“Never heard of it,” I thought.

But, by decoding the numbers, I could tell it was something that had just been discovered a few days before. Like anyone else, my first attempt to know more was a quick trip to Google.

Ah ha! A new large Kuiper belt object found from a telescope Chile, by David Rabinowitz! Yes, the same David Rabinowitz from the Haumea discovery. He has moved on to Chile to try to make newer discoveries from there, discoveries in parts of the sky that we didn’t look at back when we were working at Palomar Observatory outside of San Diego.

Based on preliminary information, it looked likely the 9th largest Kuiper belt object ever found. David was clearly on to something good here.

I didn’t have time to delve into any more details because all of this had occurred as I was sitting in a movie theater waiting for the start of The Princess and the Frog with Lilah. She loved the part before the movie started because she could watch the on-screen ads. I checked my email and found out that there was a large Kuiper belt object that someone else had discovered. Then the movie started. I was itching to get more information about 2009 YE7, but I allowed my mind to drift down the bayou instead.

After the movie, though, my mind set to work on the implications of this new discovery. Based on its brightness it might well be a perfect size to test one of my new theories about medium-sized Kuiper belt objects. I feel like I now understand the largest objects, and I fear that I will never understand the smallest objects, but the middle ones are within grasp, if we can just find a few more to test some pet theories about them. For 2009 YE7 to be a good candidate for my theory we need to know if it has a moon, what color it is, and what materials are on its surface. Then we’ll see. I started thinking about where 2009 YE7 is in the sky, what telescopes I could use to point at it, how to time the observations.

Even as I was thinking these thoughts, my mind was drifting back to the discovery of Haumea exactly five years earlier. Back then, on the day of the discovery, we knew absolutely nothing. I had no good ideas about what Haumea would be like; I had no theories I was testing, no hypothesis to work out, no predictions to boldly claim. We were simply in the very early stages of exploration to see what was there. The exploration was going well! Soon after the discovery of Haumea, we tripled the jackpot by first discovering Eris – the one we now know to be larger than Pluto – just two weeks later, and then Makemake – the one we now know to be just a bit smaller than Pluto – a few months later. I felt the universe was exploding with new bright Kuiper belt objects and possibilities were endless. We didn’t know anything about what these objects were, how big they were, what they were made of, or what had happened to them. In April 2005 I still believed it possible that they were all 3 larger than Pluto and that they would eventually be called the 10th, 11th, and 12th planets.

In the five years since, we’ve learned a tremendous amount. We determined their sizes and gave up on any of the things in the Kuiper belt being planets (I lost my bet, too). We found Haumea’s two moons; we found that it had a surface that looks like an almost perfect glaze of ice; we found that it was white, again like ice, we found it elongated and spinning end over end every 4 hours, and we found a cloud of other smaller objects on similar orbits. We found that Makemake is covered in thick layers of frozen methane, that Eris is bigger and heavier than Pluto, and, most importantly, that things were beginning to make sense. We had moved from exploration to explanation. Haumea’s strange properties – and that cloud of objects in similar orbits – were all a consequence of a giant impact 4 billion years ago or so. Eris and Makemake were large enough that they should have methane on them.

With our new found knowledge even things that had been discovered earlier were finally being put in context. Quaoar is a weird combination of Haumea and Makemake. Orcus is what Makemake would look like if it were just a little smaller. Varuna is, well, Varuna is still confusing.

Mostly, though, now instead of each object being an individually mystery to be solved, each new object is a piece of a puzzle where many of the pieces have already been put into place. With only a little information, we can guess where the piece likely goes.

Which brings me back to 2009 YE7. Five years ago, its discovery would have been a thorough mystery to solve. But when I first heard of it two days ago, it was, instead, potentially the exact area of the puzzle I had been looking to fill in. I thought it was going to be that perfect medium-sized Kuiper belt object to try out my theories. I just needed some telescopes, some computers, and some time, and everything would fall into place. I thought it would be a fun month or two to try to collect and analyze the data quickly.

I was wrong. It took me about 2 minutes to figure out almost everything that there is to know about this object and its violent history.

When I finally got home and got a chance to look a little more closely (and “a little more closely” here doesn’t mean much; as of today still nothing is known about the object except for its position for about the past two weeks), I realized two things that told the whole story. First, 2009 is YE7 bright. In absolute terms, it is the 9th brightest object, which is what led to the reasonable assumption that it is likely the 9th largest object (by absolute brightness here, I mean the brightness things would have if they were all the same distance away; some objects are bright just by virtue of being close). Second, the orbit of 2009 YE7 is tilted relative to the planets by 29 degrees. Following the position of an object for only 2 weeks doesn’t give you a precise measurement of much about its orbit, but that tilt is one thing that is solidly known even with this limited data. An angle of 29 degrees is an unusually high angle. Not too many objects are tilted by that much. But one that is is Haumea. Ah! Haumea! Haumea with its family of shards all going around the sun on orbits just like it. Tilted by 29 degrees.

2009 YE7, the brightest object discovered in the Kuiper belt in almost 5 years, is almost certainly one of the large shards (perhaps even the largest) blasted off of the surface of Haumea 4 billion years ago. 2009 YE7 and the other shards have been circling the sun on their own ever since. It is bright not because it is particularly large, but because all of the fragments of Haumea have extremely bright, reflective, icy surfaces which make them stand out against the more common darker Kuiper belt objects. 2009 YE7 is not the 9th largest Kuiper belt object; it is probably about 440 km in diameter and so in the top 50.

 I will admit that I miss the old Kuiper belt. I miss the mystery and wonder of exploration of unknown territories. There will be nothing like it in solar system studies for a long time to come, I suspect. Perhaps ever. And yet, as much as exploration is thrilling and exhilarating, there is something deeply satisfying about learning about a new bright Kuiper belt object while sitting in a movie with your daughter and understanding most of its 4.5 billion year history soon after getting home. We’ve learned so much. We’ve come so far.

….

A technical aside on 2009 YE7. The tilt of the orbit alone does not prove it to be a Haumea fragment, particularly since the other parameters of the orbit are still poorly known. Above, when  I say it is “almost certainly” a fragment, the assessment is a judgment based on experience, rather than a scientific fact. But I’m pretty confident, sufficiently confident that I’d be willing to bet (I need to win back some of my loss from that old 2005 bet, right?).  The real confirmation, though, would come from an infrared spectrum that shows evidence of deep water ice absorption features, but that requires a pretty big telescope. Almost as good, though, would be optical colors showing it to be white (solar-colored, really) like all of the other Haumea fragments. Measuring these colors is actually quite easy; all you need is a ~1 meter telescope and ~1 night of observing. Any two photometric bands would be good. I would probably just try V and R. Then measure a solar colored standard star and compare. They will be the same, I predict. Go do it! Tell me the answer! It’s fun to make predictions, and even more fun for them to come true.

…….

I don’t actually think the exploration is finished yet. The southern skies are still largely terra incognito for the Kuiper belt. David Rabinowitz has clearly just started the journey; others are scanning out there, too. Much of what they find may indeed fit into the frame of the puzzle that we already know, but I still hope some day to open up some email and read about some new discovery and sit stunned realizing that someone just found something that I didn’t expect at all.